首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43869篇
  免费   3590篇
  国内免费   4篇
  2023年   221篇
  2021年   322篇
  2020年   288篇
  2019年   275篇
  2018年   885篇
  2017年   911篇
  2016年   950篇
  2015年   777篇
  2014年   930篇
  2013年   1742篇
  2012年   3010篇
  2011年   3381篇
  2010年   1698篇
  2009年   1088篇
  2008年   2783篇
  2007年   2852篇
  2006年   2667篇
  2005年   2379篇
  2004年   2265篇
  2003年   2112篇
  2002年   2130篇
  2001年   1492篇
  2000年   1731篇
  1999年   900篇
  1998年   415篇
  1997年   338篇
  1996年   403篇
  1995年   354篇
  1994年   373篇
  1993年   343篇
  1992年   356篇
  1991年   294篇
  1990年   266篇
  1989年   254篇
  1988年   241篇
  1987年   246篇
  1986年   209篇
  1985年   307篇
  1984年   369篇
  1983年   335篇
  1982年   308篇
  1981年   293篇
  1980年   263篇
  1979年   258篇
  1978年   258篇
  1977年   242篇
  1976年   241篇
  1975年   287篇
  1974年   216篇
  1973年   205篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Summary It is apparent in the genetic code that amino acids of similar chemical nature have similar codons. I show how through successive codon captures (multiple rounds of Osawa-Jukes type reassignments), complete codon swappings in an unfavorable genetic code are evolutionarily feasible. This mechanisms could have complemented the ambiguity reduction and the vocabulary extension processes of codon-amino acid assignments. Evolution of wobble rules is implied. Transfer RNA molecules and synthetases may still carry memories of it.  相似文献   
992.
Plankton production in the Bay of Villefranche was relatively constant during March and April 1986 but the particle size at which the production occurred was more variable. At the beginning of the study, production was dominated by the larger (ca. 6 m) flagellates but towards the end it was more or less equally divided between the nano- and picoplankton. There were considerable differences in the estimates of population growth rates, depending on the methods used, but on average the population doubling times were close to 12 hours for autotrophs and 24 hours for heterotrophs. As autotrophs do not grow during the night, each population was therefore doubling once per day. It seemed that each of the nanoor picoplankton populations could adversely affect the growth of the others. This could be either by simple predation or by some form of inhibition. Although nutrient levels in the bay were uniformly low, the addition of nutrients did not always stimulate algal growth. The plankton populations seemed to be both in a state of equilibrium and intense ecological competition.  相似文献   
993.
Summary In the North American harvester antEphebomyrmex imberbiculus, in addition to dealate queens, wingless female reproductives occur that have greatly reduced ocelli and thoracic sutures (intermorphic queens). Both queen types are equivalent in function, and do not differ in ovarian morphology. Colonies may contain several inseminated and egg-laying intermorphic queens. We discuss queen polymorphism in respect to the biology of this desert-dwelling species.  相似文献   
994.
995.
Seasonal leaf water relations characteristics were studied in fully irrigated spring barley (Hordeum distichum L. cv. Gunnar) fertilized at low (50 kg K ha−1) or high (200 kg K ha−1) levels of potassium applied as KCl. The investigation was undertaken from about 14 days before anthesis until the milk ripe stage in leaves of different position and age. Additionally, the effects of severe water stress on leaf water relations were studied in the middle of the grain filling period in spring barley (cv. Alis). The leaf water relations characteristics were determined by the pressure volume (PV) technique. Water relations of fully irrigated plants were compared in leaf No 7 with the water relations of slowly droughted plants (cv. Alis). Leaf osmotic potential at full turgor (ψ π 100 ) decreased 0.1 to 0.3 MPa in droughted leaves indicating a limited osmotic adjustment due to solute accumulation. The leaf osmotic potential at zero turgor (ψ π 0 ) was about −2.2 MPa in fully irrigated plants and −2.6 MPa in droughted plants. The relative water content at zero turgor (R0) decreased 0.1 unit in severely droughted leaves. The ratio of turgid leaf weight to dry weight (TW/DW) tended to be increased by drought. The tissue modulus of elasticity (ε) decreased in droughted plants and together with osmotic adjustment mediated turgor maintenance during drought. A similar response to drought was found in low and high K plants except that the R0 and ε values tended to be higher in the high K plants. Conclusively, during drought limited osmotic adjustment and increase in elasticity of the leaf tissue mediated turgor maintenance. These effects were only slightly modified by high potassium application. The seasonal analysis in fully irrigated plants (cv. Gunnar) showed that within about 14 days from leaf emergence ψ π 100 decreased from about −0.9 to −1.6 MPa in leaf No 7 (counting the first leaf to emerge as number one) and from about −1.1 to −1.9 MPa in leaf No 8 (the flag leaf) due to solute accumulation. A similar decrease took place in ψ π 0 except that the level of ψ π 0 was displaced to a lower level of about 0.2 to 0.3 MPa. Both ψ π 100 and ψ π 0 tended to be 0.05 to 0.10 MPa lower in high K than in low K plants. R0 was about 0.8 to 0.9 and was independent of leaf position and age, but tended to be highest in high K plants. The TW/DW ratio decreased from about 5.5 in leaf No 6 to 4.5 in leaf No 7 and 3.8 in leaf No 8. The TW/DW ratio was 4 to 10% higher in high K than in low K plants indicating larger leaf cell size in the former. The apoplastic water content (Va) at full turgor constituted about 15% in leaf No 7. ε was maximum at full turgor and varied from about 11 to 34 MPa. ε tended to be higher in high K plants. Conclusively, in fully watered plants an ontogenetically determined accumulation of solutes (probably organic as discussed) occurred in the leaves independent of K application. The main effect of high K application on water relations was an increase in leaf water content and a slight decrease in leaf ψπ. The effect of K status on growth and drought resistance is discussed.  相似文献   
996.
997.
White leaves of the mutant line albostrians and green leaves of the wild-type cultivar Salome of barley (Hordeum vulgare L.) were screened for the presence of plastidic and cytosolic isoenzymes of sugar-phosphate metabolism. Isoenzyme separation was achieved by anion-exchange chromatography on Fractogel TSK DEAE-650(S). The mutant tissue had a markedly reduced level of plastidic 3-phosphoglycerate kinase, triosephosphate isomerase, and aldolase activity. In contrast, the activity of plastidic glucosephosphate isomerase, fructose 1,6-bisphosphatase, 6-phosphogluconate dehydrogenase, starch phosphorylase, and ADP-glucose pyrophosphorylase was in the same range as in wild-type leaf tissue. The activity of the corresponding cytosolic isoenzymes (including UDP-glucose pyrophosphorylase) showed essentially no differences in mutant and wild type. The same trend was observed in dark-grown mutant and wild-type leaves. Interestingly, the total activity levels of all isoenzymes were about the same when comparing dark-grown and light-grown mutant or wild-type plants. From these data, it is concluded that mutant leaves exhibit a selective decrease of a subgroup of plastidic isoenzymes associated with the Calvin cycle.  相似文献   
998.
Effects of rhizosphere microorganisms on Fe uptake by oat (Avena sativa) and maize (Zea mays) were studied in short-term (10 h) nutrient solution experiments. Fe was supplied either as microbial siderophores (pseudobactin [PSB] or ferrioxamine B [FOB]) or as phytosiderophores obtained as root exudates from barley (epi-3-hydroxy-mugineic acid [HMA]) under varied population densities of rhizosphere microorganisms (axenic, uninoculated, or inoculated with different microorganism cultures). When maize was grown under axenic conditions and supplied with FeHMA, Fe uptake rates were 100 to 300 times higher compared to those in plants supplied with Fe siderophores. Fe from both sources was taken up without the involvement of an extracellular reduction process. The supply of FeHMA enhanced both uptake rate and translocation rate to the shoot (more than 60% of the total uptake). However, increased density of microorganisms resulted in a decrease in Fe uptake rate (up to 65%), presumably due to microbial degradation of the FeHMA. In contrast, when FeFOB or FePSB was used as the Fe source, increased population density of microorganisms enhanced Fe uptake. The enhancement of Fe uptake resulted from the uptake of FeFOB and FePSB by microorganisms adhering to the rhizoplane or living in the free space of cortical cells. The microbial apoplastic Fe pool was not available for root to shoot transport or, thus, for utilization by the plants. These results, in addition to the low uptake rate under axenic conditions, are in contrast to earlier hypotheses suggesting the existence of a specific uptake system for Fe siderophores in higher plants. The bacterial siderophores PSB and FOB were inefficient as Fe sources for plants even when supplied by stem injection. It was concluded that microorganisms are involved in degradation processes of microbial siderophores, as well as in competition for Fe with higher plants.  相似文献   
999.
The effect of daily heat-shock treatments on gene expression and morphogenesis of etiolated barley (Hordeum vulgare) was investigated. Heat-shock treatments in the dark induced shortening of the primary leaves and the coleoptiles to the length of those in light-grown plantlets. In addition, the mRNA levels of the light-induced genes that were investigated were raised under these conditions and showed distinct oscillations over a period of at least 3 d. While the mRNA levels for chlorophyll a/b binding protein (LHC II), plastocyanin, and the small subunit of ribulose-1,5-bisphosphate carboxylase had maxima between 8 and 12 pm (12-16h after the last heat-shock treatment), the mRNA levels for thionin oscillated with a phase opposed to that of LHC II. Etiolated barley, the circadian oscillator of which was synchronized by cyclic heatshock treatments, was illuminated for a constant interval at different times of the day; this led to the finding that greening was fastest at the time when the maximal levels of mRNA for LHC II were also observed. Whereas accumulation of chlorophyll a during a 4-h period of illumination oscillated by a factor of 3, chlorophyll b accumulation changed 10- to 15-fold. Similarly, accumulation of LHC II was highest when pigments accumulated maximally. Hence, greening or, in other words, thylakoid membrane assembly is under control of the circadian oscillator.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号